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1. Key Teammember s

A large number ahdividuals contributed to the development of the algorithms, methods, and
implementation of the L1b approach for EMIT. The primary contributors are the following:

David R. Thompson (Jet Proision Laboratory) EMIT Co-l, Instrument Scientist

Robert O. Green (Jet Propulsion Laboratérijission PI, Radiometric modeling

Tom Painter (Jet Propulsion Laboratory$urface reflectance and BRDF

Olga KalashnikovdJet Propulsion Laboratory)Atmospheric Aersols

Sarah Lundeen (Jet Propulsion Laboratdr§gcience Data System Lead

Randy Pollock (Jet Propulsion Laboratoiryinstrument Systems Engineer

Philip Brodrick (Jet Propulsion Laboratory)Algorithms Desigrand Implementation

In addition, the algorithms described are based on prior work that includes sponsorship by multiple
research agencies and includes contributions by many individuals. These are associated with the
papers and manuscripts listed througtbis text, and provided in references under the relevant
topics.
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2 . Hi stori cal Context and Background on

l nstrumentati on

Mineral dust radiative forcing is the single largest uncertainty in aerosol direct radiative forcing
(USGCRPand IPCC). Mineral dust is a principal contributor to direct radiative forcing over arid
regions, impacting agriculture, precipitation, and desert encroachment around the globe. However,
we have poor understanding of this effect due to uncertainties dugt composition. Dust radiative
forcing is highly dependent on its minesgecific absorption properties, and the current range of
iron oxide abundance in dust source model$ (0wt%) translates into a 460% uncertainty in
regional radiative forcingredicted by Earth System Models (ESMs). Meanwhile, soil samples from
North Africa regions important sources of mineral dustontain up to 30 wt% iron oxide. The
National Aeronautics and Space Administration (NASA) recently selected the Earth Minstal Du
Source Investigation (EMIT) to close this knowledge gap. EMIT will launch an instrument to the
International Space Station (ISS) to directly measure and map the mineral composition of critical
dustforming regions worldwide.

The EMIT Mission will use imging spectroscopy across the visible shortwave (VSWIR) range to
reveal distinctive mineral signatures, enabling rigorous mineral detection, quantification, and
mapping. The overall investigation aims to achieve two objectives.

1. Constrain the sign and magmie of dustrelated RF at regional and global scales. EMIT
achieves this objective by acquiring, validating and delivering updates of surface mineralogy
used to initialize ESMs.

2. Predict the increase or decrease of available dust sources under futute stisraarios.
EMIT achieves this objective by initializing ESM forecast models with the mineralogy of
soils exposed within aisk lands bordering arid dust source regions.

The EMIT instrument is a Dyson imaging spectrometer that will resolve the distinct absorption
features of iron oxides, clays, sulfates, carbonates, and othdodustg minerals with contiguous
spectroscopic measurements in the visible to short wavblenfyared region of the spectrum.

EMIT will map mineralogy with a spatial sampling to detect minerals at the one hectare scale and
coarser, ensuring accurate characterization the mineralogy at the grid scale required by ESMs.
EMI Tés f i ne svipdolvea the ssileexppsked withan hectaswale agricultural plots

and open lands of bordering arid regions, critical to understanding feedidasles! bynineral dust

arising from future changes in land use, land cover, precipitation, and regiorakdiorcing.

Data Product Description Initial Availability | Median Latency| NASA
Postdelivery DAAC

Level O Raw collected telemetry 4 months after IOC | 2 months LP DAAC

Level 1a Reconstructed, depacketiz|{ 4 months after IOC | 2 months LP DAAC

uncompressed data, time referen
annotated with ancillary informati
reassembled into scenes.

Level 1b Level 1a data processed to sensor | 4 months after IOC | 2 months LP DAAC
including geolocation and observat
geometry information

Level 2a Surface reflectance derived |8 months after IOC | 2 months LP DAAC
screening clouds and correction
atmospheric effects.

Level 2b Mineralogy derived from fittin{ 8 months after IOC | 2 months LP DAAC
reflectance spectra, screening for
mineralogical components.

EMIT L1A Algorithm Theoretical Basis 2
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Level 3 Gridded map of mineral compositi| 11 months after IOC| 2 months LP DAAC
aggregated from level 2b wi
uncertainties and quality flags

Level 4 Earth System Model runs to addr| 16 months after IOC| 2 months LP DAAC
science objectives

Table 1: EMIT Data Product Hierarchy

The EMIT Project is part of the Earth Ventdrstrument (EVI) Program directed by the Program
Director of the NASA Earth Science Division (ESD). EMIT is comprised of a Visible/Shortwave
Infrared Dyson imaging spectrometer aiabfor installation on the International Space Station
(ISS). It will be installed on Flight Releasable Attachment Mechafig$R®M) of an EXPRESS
Logistics Carrier (ELC) on the ISS, in a site formally designated ELC 1 FRAM 8. NASA has
assigned managemenit the Project to the Jet Propulsion Laboratory of the California Institute of
Technology. The EMIT Payload is scheduled to be installed on the ELC 1 FRAM 8 inT2084.

1 abovedescribes the different data products to which the EMIT Mission will provide to data
archives. This document describes the fiLevel

Level 0: Raw instrument data Level 1b: Calibrated spectral radiance at sensor Level 2a: Estimated surface reflectance (HRDF)
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Figure 1: Representative spectra from the EMIT analysis, data product levdisahd.2a.

Level 0 Processing Level 1A Processing Level 1B Processing Level 2A Processing Level 2B Processing Level 3 Processing

Figure 2. High-level workflow of the EMIT science data system.

This document describebe theoretical basis for the algorithm produciBgM | Tidlse 2ad

product Figure 1 shows examples of the spectrdifined quantities leading up to this analysis,
drawn from an abborne precursor analogue instrumehtgure 2 is a diagram of the Science Data
System workflow, including all analysis stages and dependeficik®e sy st em begi ns v
00 raw data product that recor heEMMNhSiencdAata s ens
System (SDS) apples spectral and radiometric calibration to proditée e e | pr oelgict s
calibrated radiance measurenteat the sensorThese are then geolocalized to produce an image

that aligns with specific geographic coodinates for matching against digital elevation rnbeels.
ALevAdl i 22v e ratiacenhehsarsngentsit usegphysicallymotivated surface/atmpkere

modelsto estimatetmospheric properties asdrface reflectanceThefi L e vA® Iroplits include
atmospheric parameters and other ancillary files, but the primary output is the surface reflectance

EMIT L1A Algorithm Theoretical Basis 3
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estimate usefbr later analysis by meral deteabn and mappinglgorithms. Themineral detection

stage (not shown) performs feature fitting tbe reflectance dat estimate mineral occurrence,
creati ngBoa nmalpevad!l nati ve instrument resolution
3 0 dpat for incorporatioimto Earth System modeling to evaluate Radiative Forcing (RF) impacts.

All stages aranstantiated in the EMIT science product generation software operating at the Jet
Propulsion Laboratory, California Institute of Technology.

Al gorithm rationale and prior validat:i
Atmospheric correction (Thompson et al., 2019) has a fdettadal history of use for imaging
spectrometers viewing the Earth surface. This ai r borne precur sor i nst

ACl assico Airborne Visible I|-QGreenetaldl1998yeadisi ng S
been extended tds next generation counterpart (AVIRMEG, Thompson et al., 2017). Such
analyses have been conducted in dozens of campaigns over decades of successful optmagions.
empirical methods based @tene averaging (Kruse 1988), flat fielding (Roberts et18I86),
QUAC (Bernstein et al., 2005), and cloud shadow methods (Reinersman et alarg9@83ful but

do not scale to global observations with diverse scene content and sparse field Tagy. rely
either on manual intervention, @n specific chacteristics of the scene such as a spatially
homogeneous atmosphere or known scene content, prectheir use with EMIT. Instead we

favor a physicallymotivated correction based on radiative transfer moddisese have the dual
advantages afuperiorgeneralizability across scenes without the need for manual intervention in the
analysisandphysicalinterpretability.

Recent reviews surveying differeatmosphericalternatives appear in Thompson et al. (2019)
lentilucci and AdlerGolden (2019)andfor aquatic spectra, Frouin et al. (201Broadly speaking,
physicallybased methodshemselvesfall into two general categories (Frouin et al., 2019).
Sequential methodsst estimate atmospheric properties based on analysis of the radiance spectrum,
and then invert the radiance directly via clo$aan algebra to estimate the surface reflectance. In
other words, atmosphere and surface are estimated in two independeriEsistpsy physicsdased
atmospheric correction codes designed for imagingtspaeters all use this general method. They
include ACORN (Kruse et al., 2004), ATCOR (Richter and Shlaepferm 2002), ATREM (Gao, 1993)
and the AVIRISNG standard approach derived from ATREM (Thompson et al., 2015).

Alternatively, simultaneousmethodsestimate surface and atmosphere simultaneously, as in
Bayesian Maximum A Posteriori estimation (Thompson et al., 2018, 2019b). Simultaneous methods
carry several advantages that are crucial for the EMIT mission. First, they ergbleusi
uncertainty accounting. Uncertainty accounting on the input side mespecting instrument noise

in the radiance data which can vary by surface type, observing conditions, and wavelength, as well
as incorporating any prior background knowledgailable in the form of statistical priors. The
ability to seamlessly account for these factors makes the Bayesian inversion a flexible and powerful
approach to achieve EMITO0s extreme sensitivi:
accounting les the algorithm propagate posterior uncertainty estimates downstream, where they can
improve the performance of mineral fitting algorithms (Thompson et al.,l202@& second
independent benefit of tlemultaneous model inversi@pproach ishe demonséated ability to use

the entire spectral range of acquisition in the atmospheric correction, enabling estimation of subtler
broad atmospheric perturbations such as aerosols (an EMIT product, in the form of an AOD mask).
The main disadvantage is that the hogls use an iterativalgorithm, leading to higher
computational demands.

The EMIT mission usea Bayesian model inversion strategy, a formalism known colloquially in the
community as Optimal Estimation (OE, e.g. Rodgers 2001 careful application fogeospatial
interpolation to glean the benefits of both while minimizing cddte specific OEbased approach

used in EMIT has been validated by decades of

EMIT L1A Algorithm Theoretical Basis 4
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sounding spectrometeien many missiongand millions of acquisitions(Rodgers 2000). The
approach recently has been extended to VSWIR imaging spectrometewidatéd though peer
reviewed field studies with over 20 in situ validation trials of surface reflectance over synthetic,
water, vegetated, and leaerrain (Thompson et al., 2018, Thompson et al., 2019b, Thompson et al.,
2019c, Thompson et al., 2020). Outside the imaging spectroscopy community, the OE approach has
beenin situ measurement protocols have also been vetted by decades of contintatigrogdeuse
(Thompson et al., 2015). The code used is distributed as open source through the public repository
at https://github.com/isofit/isofit/ This transparency helps for finding errors, and alsemnd users

who desire details on the implementation specifics (e.g. data layout in memory, command flow,
etc.). The code will undergo continuing development by a growing community of users throughout
the EMIT mission.

4 . Al gorithm description

4.1 Input data

The EMIT input and output data products delivered to the DAAC use their formatting conventions,
the system operates internally on data products stored as binary data cubes with detatched human
readable ASCII header files. The precise formattingyeation adheres to the ENVI standard,
accessible (Jan 2020)tps://www.harrisgeospatial.com/docs/ENVIHeaderFiles.htftie
header files all consist of data fields in equsdgrseparated pairs, and describe the layout of the
file. The specific input files needed for the L2b stage are:
I. An observationmetadatafile, typically witht he stao i ing filhdsf i | ename,
information about the observation geometry for every pixel. The observatiosdsethe
original instrument frame (neorthorectified)coordinate system with sizeows X cols x
12] in BandInterleaved by Line (BIL) formadnd singleprecision IEEE littleendian
floating point representation. It should overlay the radiance data exactly so that all of the
pixels are associated between the two files. The channels contain:
1. Path length the direct geometric distance from tensor to the location on the
surface of the Earth, as defined by a Digital elevation model
To-sensor azimuth, in decimal degrees, at the surface
To-sensor zenith, in decimal degrees, at the surface
To-sun azimuth, in decimal degrees, at the surface
To-sun zenith, in decimal degrees, at the surface,
Phase angle in degrees, representing the angular difference between incident and
observation rays
7. Terrain slope in degrees as determined from DEMs,
8. Terrain aspect in degrees, as determined from DEMSs,
9. The caine of the solar incidence angle relative to the surface normal
10.UTC time
II. Alocationfile, typically with the string fAlocd in
the geographic projection of each spectrum. The location fidtis the originalnon
orthorectified instrumentoordinate system, with sifeows x cols x Bin BandInterleaved
by Line (BIL) format and singkprecision IEEE littleendian floating point representation.
It should overlay the radiance data exaclijne channels contain
1. Latitude of surface, in decimal degrees, with a W&3Slatum
2. Longitude of surface, in decimal degrees, in degiEsestof zero,with a WGS84
datum
3. The average elevation of the surface, as determined from a Digital Elevation Model
lll. A geographic lookup tablefilet ypi cal ly with the string ngl
information about the index into the unorthorectified data of each spectrum. It is projected
to a geographic coordinate system, with size [rows x cols x 2] in-Baadeaved by Line

S
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(BIL) format and 32bit unsigned integer representation. Its columns contain the row and
column indices, respectively, of each spectrum in the original unorthorectified data.

IV. Radiance dataatsensqgr t ypi cal | y whthefilenamesinsnitsraiWwng A r dn
/cm2/ nm / srThe data isn the instrument frame (neorthorectifiedrepresentation with
size [rows x cols x channels] in Bathaterleaved by Line (BIL) format and single
precision IEEE littleendian floating point represtation. The precise number of channels
is not yet determined at the time of this writing but should be a value close to 300.

ABad datao at the periphery outside the fiel
instrument error, is typicallgssigned the reserved (floating point) vai@@99. In additionto

these files above, which change on a per acquisition basis, the L2A stage uses a wide range of
ancillary files in its configuration. These include configuration files themselves, cloggto

and physical reference data, surface, atmospheric, and instrument model data, and more. These
ancillary files are outside the scope of this ATBD, where we will concern ourselves with the

data associated with a particular product and acquisitionwialso disregard internal

configurations used by the science data system for managing and running these processes.
Table 2 Below enumerates all products.

Input file Format Interpretation
Observation rows x columns x 12, BIL Varies (see text)
Metadata interleave 32bit floating point
with detached ASCII header
Location rows x columns x 3, BIL Latitude in decimal degrees,
File interleave 32bit floating point Longitude in decimal degrees,
with detached ASCII header elevation of surface in meters
Geographic rows x columns x 2, BIL Row and column index into
Lookup interleave 32bit unsigned unorthorectified instrument dat
Table integer, detached ASCII header
Radiance rows x columns x channels, BIL Radiance at sensor W /cm2/
data interleave 32bit floating point nm/ sr.

with detached ASCII header
Table 2: Input files

4.2 Theoretical description

Broadly speaking, the EMIT atmospheric correction stage has several goals. All operations involve
the atmosphere to some extent, and operathecalibrated radiance files, so we combine them for
organizational convenience into a single product level. The Level 2a output includes:

1 Estimates of local aerosol and atmospheric water vapor content of the atmosphere along
with the Lambertiarequivdent surface reflectance, all with uncertainty predictions.

1 Flags for highhaze conditions (i.e. aerosol optical depths exceeding our working range).

1 Mask for cloudy regions of the scene which lets downstream analyses to exclude them.

Figure3 belowillustrates the sequence of operations along with the major input and output

products at each stage. All procedures execute sequentially moving from top to bottom. Boxes are
colored according to their designation as level 1B, level 2A, or intermedataqts. Since cloud
masking is a separate operation with minimal dependencies or algorithmic relationship to the
surface atmosphere estimation, we treat it separately in a later section.

EMIT L1A Algorithm Theoretical Basis 6
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Figure 3: Sequence o | Calibrated, georeified radiance cube | | Soene Geometry and Digtal
operations in the EMIT with uncertainties Hevation Model

level 2A Stage. All Qoud Segmentation Calculaet%MODTF?AN
identificati g1 .0 LUT
reflectance and atmosphe =" &9
Ef]tcl:r;r?;?nsty prea(!jsi(?tiolnnSCIUd Cloud mask Ifggie;ﬁggg Atmosphere & surface estimation (OF)
Reflectance estimates Aerosol optical
for reference spectra depths & H20
PP
empirical line
extrapolation RODIEE

Calibrated, georectified reflectance
cube with uncertainties

4.2.1 Radiative Transfer and Atmospheric Modeling

Physicsbased retrievabf atmospheric parameters and surface reflectameally relies on
mat hemati cal model s expressing the spectral
atmosphere at the tag-atmosphere (TOA) as a sum of radiative terms from different processes,
such as the photons scattered by the atmosphere into the saasof $ight or those multiply
scattered between the atmosphere and the suffegare 2) While in general the atmospheric
effects are dependent on nbambertian properties of surfaeémosphere coupling, the EMIT
analyses permit several simplificationBhe mineral absorption fits used in later stages are relatively
invariant to spectrallyeatureless magnitude differences resulting from-lbmmbertian behavior.
Additionally, surfaces in arid mineral dust forming regions are mostly Lambertian at that
instrument 6s gr dfonetamplé depde trae ganopiasrot opdn ecean. Finally,
imaging geometry is near to nadir. These circumstances mean that we can report Lambertian
equivalent properties in the general case without significant dbssccuracy to downstream
algorithms. This permits the following decomposition (Thompson et al., 2018):

’H'LM T o Ps
Ptaa = Fcos(0) Pa + 1—Sop; 1)
where bolfacedenotesvectorvalued quantitie@in this case, specfrand circles represent element
wise multiplication The symbol’  refers to the tof-atmosphere reflectanci is based on the
radiance measuremeni, the extraterrestrial solar flu¥ and the solar zenith angle The symbol
T is the direct ad diffuse transmission of threeanoptical path from sun tground to sensof is
the spectral albedo representing the atmospheric reflectance as seen from thée’ susféoe path
reflectance of the atmosphea;d” is the Lambertiarequivalentsurface reflectance.

These terms are related to several physical properties in the atmosphere. Of special interest are the
scattering and absorption by molecular gases and aerosols (Figudgich all contribute to each

of the terms in equation 1. An example of the transmittance contribution from gas absorption appears
in Figure5 below, adapted from (Thompson et al., 2019). We calculate the EMIT atmospheric
absorption and scattering pespy estimates using the MODTRAN 6.0 Radiative Transfer Model
(Berk et al., 2016; 2016b). Given a specific atmospheric state, MODTRAN can estimate the optical
coefficients S, T, and of Equation 1 from physical first principles. We perform this estimaation

high spectral resolution, transform the result to the EMIT instrument spectral response.

EMIT L1A Algorithm Theoretical Basis 7
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Figure 5: Atmospheric gas
absorpton by wavelength acros
the EMIT spectral interval.
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Figure 4. The atmospheric correction process involves joil
estimating the parameters of a model that includes the st
reflectance, the atmospheric congnts, and the instrument.
wide range of different physical effects, including scatter
absorption, and the target surface reflectance signal, all play a 1
determining the photon distribution at the sensor.
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The MODTRAN 6.0 atmospheric gas absorption
absorption coefficients from the HITRAN 2012 line list (Rothman et al., 2012). Following on prior
work, we augment the basic configuration with three basic aerosol wigegiThompson et al.,
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2019b) representing small, medium, and large particles such as soot, sulfates, and dust. The soot and

sulfatederived signatures are spherical, while dust particles are nonspherical.
described by spectral absorptiomtiection, and asymmetry profiles in prior work (See Figéire
adapted from Thompson et al., 2019c). The complete aerosol is a contribution of all three aerosol
optical depths, each specified independently (typically at the reference wavelength 5h0esn).

three signatures are used structured error terms in the inversion process to improve atmospheric
correction. This also permits an aggregate AOD estimate for scene flagging. InG-igpeeA is

a strongly absorbing aerosol signature derived froat.sType B is a separate signature based on
continental dust absorption and scattering coefficients. Type C is a small scattering particle based
on a sulfate signature. We advise against interpreting the individual retrieved as physical properties

of the particles.
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Figure 6: Aerosol profiles (image and approa
adapted from Thompson et al., 2019c). We
three signatures as structured error terms in
inversion process to improve atmosphe
correction and to permit an aggregate A(
estimate foscene flagging. Type A is a strong
absorbing aerosol signature derived from si
Type B is a separate signature based
continental dust absorption and scatter
coefficients. Type C is a small scattering parti
based on a sulfate signature.hig the inversion
process estimates the AOD of each signa
independently, we advise against interpreting
individual retrieved as physical properties of 1
particles due to uncertainties in vertic
distribution and ambiguity in optical properties
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4.2.2 Model Inversion

Our retrieval algorithm is based on Bayesian Maximum A Posteriori (MAP) inversion of equation

1, using a strategy known colloquially as Optimal Estimation (OE, Rodgers, 2000). This approach
has been demonstrated previously intipld imaging spectrometer field studies (Thompson et al.,
2018, 2019b, 2019c). Its advantages include rigorous uncertainty propagation and the ability to
estimate atmospheric aerosol constituents in high AOD conditions. The main disadvantage is a high
computational cost due to the iterative inversion algorithm, which must run independently on every
spectrum. Here, we address this by running the full algorithm on a representative subset of several
thousand spectra per scene. These results enable y dighiate, spatialfocal empirical line
estimate for the remainder, allowing millions of spectra to be corrected and capturing the tkenefits
the iterative approach at a feasible computational cost.

The Bayesian Model inversion acts as a local ascent of the posterior probability density for a state
vectorx consisting of surface and atmosphere parameters (Figure 7). As in Thompson et al. (2018)
we initialize the result to a heuristic estimate using a band ratio across water vapor absorption
features, and an algebraic inversion of equation (1). Then, rativieegradienbased Levenberg
Marquardt follows the (negative) derivative of the following cost function until converging to a local
minimum:

X0xr) = 5 (%1~ Fx) W7 (%~ Fx,))+

S0 — 1) T8 G — )

2

The first term is related to the logarithm of the multivariate data likelihood at the current state vector;
the second term penalizes departures from the prior in similar fashion. All probability distributions
are multivariate Gaussians. Heweis the observation noise that incorporates measurement noise
in the radiance measuremantas well as any unkmens in the surface atmosphere system that are
treated here as random variables. The forward mpdel maps the reflectance and atmosphere
state vectore , to the measurement space using Lookup table interpolation of optical coefficients
in Equation 1. The multivariate Gaussian prior over surface and atmosphere is defined by
Covariance matrix and mean . These prioraire intentionally set to be extremely broad in order
to avoid estimation biam atmospheric parametersSimilarly, we use aery loose and heavily
regularized surface prior. It is based on a collection of multivariate Gausasassggested in
Thompson et al., (2018, 2019a, 2019ning the Euclideanearest component of the initial state
calculated in reflectance space &g fprior. All spectra are Lzhormalized for the purposes of
calculating these distances and prior distributions so that the distribution affects the shape but not
the magnitude of spectrahe only difference with the formulation in these previous studidsat
all wavelengths outside critical atmospheric windows areelefirely decorrelated This allows
instrument noise to enter the reflectance estimate unmodified, and permits highly accurate retrieval
of absorption features in mineral bands.

Upon convergence, the linearization of the forward model produces an estimate of the posterior
probability density. For K representingJacobian matricesof partial derivatives i.e. the
instantaneous change in the state vector from a change in thatealilbadiancethe posterior
covariance takes the form

v, = (K/'v, 'K, +2 17!

EMIT L1A Algorithm Theoretical Basis 9
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Thisyieldsareflectance, atmosphere, and unceriagstimateor each reference speatn. The
final step is an Empirical Line operation (Thompson et al., 2016) that usese¢heest solutions
to extrapolate an exact solution for the hrgkolution data.

Figure 7. The Bayesian mode
inversion begins at an initial gues
and climbs the local gradient of tt
posterior probability densit
(equivalently, minimimmg the cost
function in equation 2). At the tim
of convergence, this produces
linearized estimate of posteric
uncertainty, portrayed here as

ellipsoid.

Figure 8: (Left) Cuprite, NV
scene (Right) Interpolated
OE estimation of asingle
reflectance spectrunvia the
local empirical line solution
Sharp, spectrallydiagnostic
Kaolinite features are visibl
in the 22.5 micron range.

4.2.3 Superpixel Segmentation

Since complete model inversion of every spectrum is computationally intractable, we use a
segmentation to identify representative spectra in the flightline where we apply our model
inversions. After performing the atmosphere/surface estimation on theseptative subset of, we

assign the atmospheric estimates to each location associated with that segment. We then use the
representative spectra to calculate | ocal i E m
et al., 2016). The empirical linperforms the exact atmospheric correction for all independent (non
aggregated) spectra at maximum spatial resolution.

The initial segmentation uses a superpixel aggregation approach based on the SLIC algorithm
(Achantaet al., 2012 We reduce all spectra in the file to a basis of five orthogonal dimensions with
principal components analysis, and segment the result into regions that are (a) contiguous and (b)
contain several hundred pixels of similar radiance properties. Feglitestrates the superpixel
segmentation of a scene from NASAO6s Next Ge
Spectrometer (AVIRISNG). It results in a reduced subset of loca#presentative radiances and
associated regions. This dataset is typycaB orders of magnitude faster to analyze. Additionally,

it significantly reduces noise variance to assist with accurate atmosphere estimation. Similarly, we
take the mean radiance and location of each segment as the input to the following atmospheric
correction.

EMIT L1A Algorithm Theoretical Basis 10
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RGBph;nngls__ - ] _ - i _ Figure 9: SLIC
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segmentation combines
contiguous pixels of
similar radiance
properties into a single
local reference area and
associated radiance
spectrum.

4.2.4 Empirical Line extrapolation

The empirical lingMoran et al., 2001jirst identifies the nearestlepresentative spectfar the

current segment Optionally, one carweight vertical distance on the EM differently from
horizontal distance. It then calculates an independent lineasskpaates regression solution for
every wavelength, finding the offset and coefficient that maps radiance onto reflectance for that
specific atmospheric conditionCoefficients are calcated once per segment and cached for
application to the finescale spectra withirBecause the empirical line estimate is spatially localized
the linear solution for each wavelengéspects local variability of the atmosphere while providing
both AOD andH20 estimates over the entire sceiteaccurately identifies signatures that appear

in small single or subpixel locations thatre not apparenh the spatiallyaggregated estimate.
Figure10 shows an example of the empirical line prediction for there, NV scene at 550 nm,
showing that the representative superpixel sbo
linear relationship. This permits a highly accurate estimate for thedamle spectrum shown in red.

Figure 10: Empirical line estimate foan o425 -

example segment of the Cuprite flightlil 7 s
portrayed in Figure 6. Black points shc Lt
the mean spectra of the 15 near

reference spectra to a fiseale radiance
we aim to invert. Since the relationship
locally linear, it is easy toquickly
determine an accurate solution via line
regression. -
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4.2.5 Cloud Masking

The radiance data analysis begins with a cloud masking operation following on the prior work of
Thompson et al (2@0. This procedure places pridistributions on the distributions of top of
atmosphere reflectances at three representative wavelengths: 420 nm, 1250 nm, and 1650 nm. The
di stributions of 1intensiti e sseparatedpermdtingoausshgle a n d
trivariate theshold to flagclouds.
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EMIT Level 2a ATBD

Figure 11: Thresholds in three channe
combi ne to define ¢
region. o Any pi xel
all three channels is considered cloudy.

Threshold @ Excluded region &

Counts

Cloud
pixels

Channel value y;

Any pixel exceeding the threshold in all three channdlggged as cloudy, and the result written
to a binary cloud mask for use in later analy3ise thresholds define an exclusion redioFigure
11) that defines the boundary between cloud and clear locations. Consequenthtofoofa
atmosphere reflectanapectrumy the decision rule () classifying the pixel as either cloudy,
written ¢ , or clear, written g is simply:
c, fyeR

Iy)= {cg, ify ¢ R.
The Bayesian foradism of Thompson et al (2@8Lallows the designer to set a threshold on all three
channels that optimally balances the risk of data loss from false positives against the risk of passing
cloud pixels into subsequent analysis. For the EMIT mission, midates of interest are far darker
than clouds, so we set a conservative threshold during cloud masking. The expedediosgion
of the prior class probabilities (taken here as uninformed or uniform), the probability density of a
given observatiofor cloudy classes, for a given state variablee pr esent i ng t he | oc
and season. For simplicity we ignore this last variable, leading to a uniform decision rule applying

equally to all different surfaces. The expected loss for a relatighting of false positive and false
negative errors, respectively written and, , is:

E[L] = /(.u:pP(y | x,¢1)P(cy)dy + / apnP(y | x,c2)P(cy)dy.
R RI\R

A false positive weighting of 2@000is a conservative threshold that is very unlikely to exclude
bright surface spectrakigure 12 below showshatbare terrain is much darker than typical cloud
spectra, particularly in the ultraviolet and blue channels. Water is uniformly dark. Snovecan ice

be bright in the visible channels, but exhibits high absorption in the near and shortwave infrared
which permits any thresholding method of two or more channels to separate them effectively. The
panel at right shows the bivariate exclusion regionsviar representative false positive weight
values, illustrating that the two are sufficient to discriminate snow and terrain from cloud pixels in
a diverse historical datas€igure13 below, taken from Thompson et al. (2)1shows an example
applicationof this approach to a scene frod"/A S AGl assi co0 Airborne Vi sil
Spectrometer (AVIRISC). The left panel shows the original scene in red, green, and blue optical
wavelengths. The scerentains both bright snow and dispersed cloudse fhiddle panel shows

the result of the cloud masking operation usheychannelwise threshold. We note that an onboard
cloud masking operation performs a similar operation, excising the most obvious clouds to reduce
data volumes. This operation useseaan more conservative threshold, and excises entire vertical
segments of a scemath toomany cloud pixels.

We dilate the detected cloud masks in order to avoid cast shadows and disruption of the incident
light field adjacent to clouds. Figurd $hows a graphical illustration of the method. The maximum

cloud height and solar zenith angle define a geographic exclusion area around each cloud where
shadows may be foundwWe apply an efficient imaggpace distance transformation to the cloud
mask,prodai ng an array specifying every image | oc:
flag any pixel whose distance lies within the exclusion interval. The maximum cloud height is 3000

EMIT L1A Algorithm Theoretical Basis 12
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m, which is low enough to preserve data but high enough to cdabtureajority of opticallythick

cumulus clouds. Higher altitude stratus clouds are less important for this purpose because they are
more likely to be large, spatialyontinuous cloud masses. Such clouds subtend a large enough
fraction of the image to béltered by the onboard cloud masking system. Additionally, their
altitudes are high enough that they would require an infeasibly large exclusion region. This cloud
height may be reassessed during the mission.

v
B x ]0I 30000

' = Cloud
'|f‘|ll ' Bare terrain

u s= =" Water
= = = Snow

25000

:

15000 1

DN (dark—subtracted)
0.45um channel intensity

g
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e i : \

DR T N e T D e I S e .
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Figure 12: Cloud screeninglustration, from Thompson et al. (2011 Left: Brightness distributions
for cloud, bare terrain, and snow have very different spectral shapes. Right: Two of three threshold
channels showing fAexclusion regi ogitiges. def i ned

Figure 13: L2A cloud screening compared to onbo: .- - ;PR
(reattime) excision, adapted from Thompson et a4
(2013). The right panel shows an acquisition
NASA6s fAClassico Airbor
Spectrometer (AVIRISC). We show visible dnnels
of scene content including bare dark terrain, bri
snowcovered terrain, and cloud. The middle pa
shows the L2A pixelvise cloud masking. The onboa
excision performs a prgcreening using an even mc
conservative threshold to reduce traiited data
volume; this excises vertical segments of each scent
contain more than an acceptable number of cloud pi:

Avoids shadow and Figure 14: The cloud mask dilation excludes pixels that are
‘:% diffuse light effects likely to contain contamination by cloud diffumination or
h cloud cast shadowsWe excise pixels in a conservative
L] exclusion region defined by the solar zenith amaaximum

cloud heighparameter.

Max.

cloud !

height '
1
1

Dilation

4.3 Practical Considerations

Due to the computationalgemanding nature of the EMIT L2A stage, operators must attend to the
balance between accuracy and speed in their settings for approximations like the lookup table grid
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spacing (which affects the number of MODTRAN runs) and timebax of superpixels (which
affects the accuracy of empirical line extrapolation). Currently, a-tbrdeur-point Aerosol
AOD model is used, with linear interpolation between. The H20 model uses a 0?’Zgéauimg.
As computational resources perntitese numbers will be relaxed. As of the writing of this
document, a typical airborne flightline require tlays to complete for a single CPU; given a
cluster with many CPUs, keeping up with the EMIT datastream is feasible. However, we
anticipate furtler accuracy improvements as additional CPUs come online.

5 Out put Dat a

The EMIT output data products delivered to the DAAC use their formatting conventions, the
system operates internally on data products stored as binary data cubes with detatched human
readable ASCII header files. The precise formatting convention adheres to the ENVI standard,
accessible (Jan 2020)&tps://www.harrisgeospatial.com/docs/ENVIHeaderFiles.hthfe

header files all consist of data fields in equstgrseparated pairs, and describe the layout of the
file. The specifioutputfiles from the L2b stage are:

I. A surface reflectancedile, t ypi cal | yrfloviitrh tthhe fsitlrthemagmei, ¢
estimated spectral surface reflectafareevery pixel. It is provided in the non
orthorectified instrumentoordinate system with size [rows x colshannelin Band
Interleaved by Line (BIL) format and singteecision IEEE little-endian floating point
representation. It should overlay the orthorectified radiance data exactly so that all of the
pixels are associated between the two files.

Il. A reflectance uncertaintyfile, t ypi cal | yuneeidt h nt riedees tf i il mg A
containingpredicted uncertainty in the reflectance measurement for each channel, in units
of standard deviations (presuming a Gaussian distribution). Covariance is ignased. It
provide in the novorthorectified instrumertoordinate system witkize [rows X cols x
channelfin BandInterleaved by Line (BIL) format and singigecision IEEE littleendian
floating point representation. It should overlay tbectance and radiandata exactly

lll. Amaskfile, typi cal | ymask t ihilentmeeecantaininghagneld with the
following information:

Probability this pixel is cloud

Probability this pixel is standing water

Dilated cloud mask

Aerosol Optical Depth (550 nm)

Estimated Columnar Water Vapor (g émn

. Aggregate bad data flag

Thefourthc hannel appl i es E Mlothezlmannetsairsckdertog r ul es t
determine whether that pixel will be used in subsequent aggregation to the Level 3 product.
The fileis projected into a geographic coordinate system with size [rows x chEweld

in BandInterleaved by Line (BIL) format and singpgecision IEEE littleendian floating

point representation. It should overlay tefectance and radiandata exactly

ok wNE

Anyfilecancontaimbad dat ao as a resul t eordr Thedepixetbarenas ki n
typically assigned the reserved (floating point) vaR@99. Table 2 Below enumerates all
products.

Output file Format Interpretation

Reflectance rows x columns xhannelsBIL interleave 32  Lambertiarequivalent
bit floating point with detached ASCII header surface reflectance

Uncertainty rows x columns xhannelsBIL interleave 32  Reflectance uncertainty
bit floating point with detached ASCII header (one standard deviation
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Mask rows x columns %, BIL interleave 32bit Varies by channel (see
unsigned integer, detached ASCII header above).
Table 3: Output files

6 Cali brati on, Val i dati on, and Fi el d Mea

Level 2 reflectances will be validated using standard field protocols used in prior field studies
(Thompson et al., 2018, 2019a, 2019b, 2020a). We will measure surface reflectance of a large
uniform bright surface, such as a playa, using field spectroradiometers, with coincidént in
AEROSOL optical depth estimation by sun extinction measurements from the gdowingd the

EMIT overflight. Instrument measurement and spatial variability, combinigduncertainties in

the atmospheric model and retrieval, can demonstrate closed uncertainty budgets as in Thompson
et al. (2020a) or simply good agreement between the estimate and reality, as in Thompson et al.
(2018) Figure B below shows examples afcalibration/validation experiment at Stonewall

Playa, Ivanpah, with the spectroradiometer field unit (left panel), the playa itself (center panel),
and the comparison of reflectances (right par@lyy. calibration and validation plan includes

several loations that we will use opportunistically in response to ISS overpasses.

0.4 Stonewall Playa Measurements (150)
Predicted Uncertainty (150)

750 1000 1250 1500 1750 2000 2250
Wavelength (nm)

Figure 15: Left: Field spectroradiometéor validation Center Stonewall Playaalidation site
Nimrod Carmon demonstratinBight Remote andh-situ retrievalswith 15, uncertainty
predictions (Thompson et al., 2020).

Prior verification and validation for the Level 2 algorithm takes several approaches. The codebase
is available as open source (ISOFIT, 2019) and has a growing communigr®fruthe research
community. The method draws from decades of atmospheric sounding research (Rogers 2000)
and its specific application to imaging spectroscopy has been vetted for multiple instruments and
campaigns across continents, compared with indgita and published in peer reviewed literature.
Publications referencing the results of this code on airborne precursor data include work by
Thompson et al. (2018, 2019b, 2019c), Frouin et al. (2019), and Bue et al. (2019). Field trials
demonstrate gabalignment with irsitu reflectance data, and residuals consistent with posterior
error predictions. Figureglshows one example from Ivanpah Playa, conducted in 2018.
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Figure 16: In situ validation of reflectance estimation algorithm.
(Above) In situand remote measurements align to within posterior
error predictions. Adapted from Thompson et al. (2018). (Right) F
validation at Ivanpah Playa, from Thompson et al (2019).

AOD estimates show good alignment with spatiotempoaibximal MODIS retievals over
difficult hazy conditions, and with isitu estimates by handheld sunphotometers (Fighjre 1

Figure 17: (Left) MODIS _o® e //
AODS550 estimates align 2o 7 /
with remote airborne S 05 =083 8 7
retrievals acquired on the  §,, R g T

same day within a B 2 g . ha
latitude/longitude degree. ¢ ° oﬁ/o ‘. v

(Right) Airborne retrievals ~ §°° 9 40 . R

align with in-situ goz T w7

sunphotometry. Both image gm %/o oo 7

are from Thompson et al. 00 0‘.1 0‘.2 013 014 0‘.5 0‘.6 017 O‘.B OO /005 01 015 02 025 03 035 04 045 05
(20 19C) MODIS AOD550 (Regionally proximal, standard deviatic In situ AODS50 estimate

For the EMIT mission we performed a separate sensitivity study to determine the degree to which
aerosol type mismatch during atmospheacrection could impact surface mineralogy estimates.
Specifically, we examine a mismatch between the template aerosol profiles in the EMIT
surface/ atmosphere retrieval process and the
It is likely that the optical properties in the retrieval and atmosphere never match exactly; templates
are intended as generic flavors of distortion that the inversion can mix in proportions to achieve good
quality inversions. It is reasonable to ask whether an eséen optical type, not captured by the
combinations of palette options, could induce an erroneous residual shape in the surface reflectance.
Most damaging would be an absorbing aerosol that bears its own minerals inducing some
hallucinatory mineralike change in the surface reflectance. Such situations would not be common
in practice, though mineral absorption profiles are occasionally visible in dust plumes imaged
historically by spectrometers under extreme conditions (Chudnovsky et al., 2009).

Ourexperiment uses an atmosphere based on thexide-bearing dust mineral profile in the CAM

earth system model. This is a strongly absorbing aerosol with shapes distinctly different from the
profile palette in our inversion. Notably, the shapes dtapabsorptions by atmospheric dust also

differ significantly from the surface minerals. They are also somewhat muted in their airborne dust
form due to embedding within larger particles. As a consequence, we hypothesize that a band depth
estimate of hemttite absorption surface signatures should not be significantly affected by any surface
reflectance error from this mismatch. To test this, we simulate a stressing case in which the
instrument observes a hematite absorption feature, with and withoutigioraad perturbation at

2% relative band depth. This level of sensitivity is the detection limit targeted by EMIT. Our
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